Accelerating Stochastic Dynamics Simulation with Continuous-time Quantum Walks

نویسنده

  • Yan Wang
چکیده

Stochastic diffusion is a general phenomenon observed in various national and engineering systems. It is typically modeled by either stochastic differential equation (SDE) or Fokker-Planck equation (FPE), which are equivalent approaches. Path integral is an accurate and effective method to solve FPEs. Yet, computational efficiency is the common challenge for path integral and other numerical methods, include time and space complexities. Previously, one-dimensional continuous-time quantum walk was used to simulate diffusion. By combining quantum diffusion and random diffusion, the new approach can accelerate the simulation with longer time steps than those in path integral. It was demonstrated that simulation can be dozens or even hundreds of times faster. In this paper, a new generic quantum operator is proposed to simulate drift-diffusion processes in high-dimensional space, which combines quantum walks on graphs with traditional path integral approaches. Probability amplitudes are computed efficiently by spectral analysis. The efficiency of the new method is demonstrated with stochastic resonance problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating Diffusion with Quantum Walks on Graphs

The path integral method has been an effective approach to solve the Fokker-Planck equation that simulates the evolution of probability distributions in diffusion processes. Yet the major challenges include the memory requirement to store the transition matrix in a fine-grained state space and a small time step required for the accurate estimation of short-time transition probabilities. Previou...

متن کامل

Simulation of Quantum Walks using HPC

We describe program Hiperwalk, which is a new simulator of the main quantum walk models using high-performance computing (HPC). The simulator is able to generate the dynamics of discrete-time quantum walks and staggered quantum walks, and will be able simulate continuous-time quantum walks and Szegedy’s quantum walks. It has an user-friendly input and is able to use hybrid HPC architectures, wh...

متن کامل

On the relationship between continuous- and discrete-time quantum walk

Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discretetime random walks, the two types of quantum w...

متن کامل

Proposing A stochastic model for spread of corona virus dynamics in Nigeria

The emergence of corona virus (COVID-19) has create a great public concern as the outbreak is still ongoing and government are taking actions such as holiday extension, travel restriction, temporary closure of public work place, borders, schools, quarantine/isolation, social distancing and so on. To mitigate the spread, we proposed and analyzed a stochastic model for the continue spread of coro...

متن کامل

Limit Theorems for Continuous Time Random Walks with Slowly Varying Waiting Times

Continuous time random walks incorporate a random waiting time between random jumps. They are used in physics to model particle motion. When the time between particle jumps has a slowly varying probability tail, the resulting plume disperses at a slowly varying rate. The limiting stochastic process is useful for modeling ultraslow diffusion in physics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016